Abstract

Nighttime light (NTL) intensity is highly associated with the unique footprint of human activities, reflecting the development of socioeconomic and urbanization. Therefore, better understanding of the relationship between NTL intensity and human activities can help extend the applications of NTL remote sensing data. Different from the global effect of human activities on NTL intensity discussed in previous studies, we focused more attention to the local effect caused by the spatial heterogeneity of human activities with the support of the multiscale geographically weighted regression (MGWR) model in this study. In particular, the Suomi National Polar Orbiting Partnership/Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) NTL data within Chongqing, China were taken as example, and the point of interest (POI) data and road network data were adopted to characterize the intensity of human activity type. Our results show that there is significant spatial variation in the effect of human activities to the NTL intensity, since the accuracy of fitted MGWR (adj.R2: 0.86 and 0.87 in 2018 and 2020, respectively; AICc: 4844.63 and 4623.27 in 2018 and 2020, respectively) is better than that of both the traditional ordinary least squares (OLS) model and the geographically weighted regression (GWR) model. Moreover, we found that almost all human activity features show strong spatial heterogeneity and their contribution to NTL intensity varies widely across different regions. For instance, the contribution of road network density is more homogeneous, while residential areas have an obviously heterogeneous distribution which is associated with house vacancy. In addition, the contributions of the commercial event and business also have a significant spatial heterogeneity distribution, but show a distinct decrement when facing the COVID-19 pandemic. Our study successfully explores the relationship between NTL intensity and human activity features considering the spatial heterogeneity, which aims to provide further insights into the future applications of NTL data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.