Abstract

The focus of this work is to analyze the sintering kinetics of Ti12.5Ta12.5Nb alloy by dilatometry. The mixture of powders was achieved by mixing individual powders of Ti, Ta and Nb, which were then axially pressed. Sintering was performed at 1260 °C using different heating rates. The microstructure was determined by X-ray diffraction and scanning electron microscopy. Results show that densification is achieved by solid state diffusion and that the relative density increased as the heating rate was slow. Due to the full solubility of Ta and Nb in Ti, the relative density reached was up to 93% for all samples. Activation energy was estimated from the densification rate and it was determined that two main diffusion mechanisms were predominant: grain boundary and lattice self-diffusion. This suggests that Ta and Nb diffusion did not affect the atomic diffusion to form the necks between particles. The microstructure shows a combination of α, β and α′, and α″ martensitic phases as a result of the diffusion of Ta and Nb into the Ti unit cell. It was concluded that the heating rate plays a major role in the diffusion of Ta and Nb during sintering, which affects the resulting microstructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.