Abstract

In situ coal fires significantly pollute the environment in many countries of the world. Monitoring these pollutants is challenging due to extensive area coverage and spatial variations. Thus, the present study demonstrates the method of deriving the spatial and temporal profiles of columnar density of three major greenhouse gases (carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2)) in an in situ coal fire region (Jharia coalfield (JCF), India) using high-resolution satellite data (TROPOMI) of the European Space Agency (ESA). The study also demonstrates a new methodology for estimating greenhouse gas emissions from in situ coal burning. JCF is one of the significant polluted mining regions with multiple in situ coal fire pockets. The columnar density of the gaseous pollutants in the mining region was compared with the same in the rural, urban, and forest regions to identify the major emission inventories. The study results indicated that coal fire is the major source of CO emission in the region, as the CO was high in the fire regions compared to that of the non-fire regions. But, the major source of NO2 is the traffic, as the NO2 was high in the city area as compared to other regions. The spatial profile of SO2 does not reveal the specific emission sources. The study results indicated that TROPOMI onboard satellite sensors could be effectively used for deriving the spatial profiles of greenhouse gaseous in coal fire regions, which further assist in identifying the emission inventories. Furthermore, the satellite-based Earth observations offer information to understand and manage the greenhouse gas emissions over a large area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call