Abstract

We investigate a class of stacked metasurfaces where the interaction between layers is dominated by their respective far-field response. Using a semi-analytic scattering matrix approach, we exploit the Fabry-Perot-type response for different layer distances to show the spectral tunability of the resonant effect. This method presents a faster and more intuitive route to modeling Fabry-Perot-type effects than rigorous numerical simulations. The results are illustrated for a chiral metasurface stack that exhibits asymmetric transmission. Here, the effect of asymmetric transmission is highly sensitive to the layer distance, which is used as a free parameter in our model. To prove our theoretical findings we fabricate two variants of the stack with different layer distances and show that far-field interaction between layers is sufficient to generate the effect while being accessible by semi-analytic modeling. The analyticity of the approach is promising for designing sophisticated layered media containing stacks of arbitrary metasurfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call