Abstract

The impedance of solar cells can be leveraged for a variety of innovative applications. However, for the continued advancement of such applications, it is crucial to understand how the impedance varies during practical operation. This work characterizes the impedance of modern crystalline silicon solar cells across different bias voltages and under varying illumination and temperature conditions. It is found that for a given bias voltage, variations in temperature have a notably stronger impact on PN junction impedance than changes in irradiance. However, during maximum power point (MPP) tracking, variations in irradiance have a larger influence on the PN junction impedance than temperature variations. This is related to the shifting operating voltage during operation. Furthermore, it is shown that the capacitance during practical operation can strongly vary for different solar cells. For instance, the areal MPP capacitance values of the two cells tested in this study at 0.1 sun irradiance and a temperature of 30 °C were 0.283 μF/cm2 and 20.2 μF/cm2, a 71-fold difference. Conversely, the range of the MPP diffusion resistance was found to be highly similar for different cells. The results of this study enhance the understanding of solar-cell impedance and have a broad applicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.