Abstract
Results are presented from long-term investigations of a wide range of polymer systems, varying from elastomers and thermoplastic elastomers to plastics and fibers. The thermophysical properties of both initial and modifying additive–containing polysiloxanes, block copolymers, and poleolefins that differ in chemical nature, structure, and composition are analyzed. It is shown that deformation calorimetry allows the simultaneous registration of mechanical (from 5 × 10−3 kg) and thermal effects (at a sensitivity of 2 × 10‒7 J/s), and the determination of changes in enthalpy, internal energy, and intra- and intermolecular contributions to the formation of the tensile stress response. In other words, it provides a unique opportunity to analyze the deformation mechanism of investigated systems and its dependence on the changing parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.