Abstract
Significant investigations were performed on the use and impact on physical properties along with mechanical strength of the recycled and reused e-glass waste powder. However, it has been modeled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. This study investigates the long-term feasibility of using recycled display e-glass waste as a partial substitute for dune sand at varying percentages (5%, 10%, 15%, and 20%). The main focus is on evaluating its effectiveness in radiation shielding, strength properties, and durability for long-term development under the heating environmental process. Statistical analyses, including analysis of variance, are used to assess the significance of factors and their interactions on these characteristics. Additionally, a regression equation derived from the model offers insights into the quantitative relationship between the factors and properties. The results of the experiments led to the conclusion that the most effective proportion of e-glass waste to include in mortar is 20%, with the weight of dune sand. Including e-glass waste, they significantly increased the five characteristics of the mortar, making it suitable for high-strength mortar applications continue up to 68MPa. The ANOVA model used in this study was trained using the same experimental research design and was critical in predicting the properties of the mortar. The model produced an accurate result with an R2 value greater than 0.99. E-glass replacements exhibit remarkable radiation shielding, characterized by pozzolanic activity and superior internal bonding due to its compact texture, contributing to enhanced long-term strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.