Abstract

This study examines the impact of risk models and investors’ risk aversion on the selection of community solar portfolios. Various risk models to account for the volatility in the electrical power output of community solar, namely variance (Var), SemiVariance (SemiVar), mean absolute deviation (MAD), and conditional value at risk (CVaR), were considered. A statistical model based on modern portfolio theory was employed to simulate investors’ risk aversion in the context of community solar portfolio selection. The results of this study showed that the choice of risk model that aligns with investors’ risk-aversion level plays a key role in realizing more return and safeguarding against volatility in power generation. In particular, the findings of this research revealed that the CVaR model provides higher returns at the cost of greater volatility in power generation compared to other risk models. In contrast, the MAD model offered a better tradeoff between risk and return, which can appeal more to risk-averse investors. Based on the simulation results, a new approach was proposed for optimizing the portfolio selection process for investors with divergent risk-aversion levels by averaging the utility functions of investors and identifying the most probable outcome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call