Abstract
The Direct Fusion Drive (DFD) and its terrestrial counterpart, the Princeton Field Reversed Configuration (PFRC) reactor, have seen significant developments in the past decade. Various groups conducted detailed research on the required specifications of the engine and associated technology for power delivery to onboard avionics and payloads. Multiple studies have also addressed the thrust generation mechanism using empirical specific power scaling relations and plasma flow simulations. Recent studies have designed spacecraft for missions to Earth’s second Lagrange point, Mars, transneptunian bodies like Pluto, and the neighboring star systems Alpha Centauri A and B. However, significant work is needed to design the engine components in detail using scientific scaling relations and ab inito calculations to develop the physical systems for prototyping and testing. After critically analyzing the reference design of the DFD and the underlying fusion reactor, this paper addresses the technological gaps and suggests avenues to improve specifications toward targets outlined in previous studies while considering costs. Further, the authors present a prototype engine and magnetohydrodynamic power conversion system design to study the engineering hurdles relevant to the practical implementation of the DFD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.