Abstract

Metalloproteinases of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin type 1 repeats) superfamily are extensively modified with glycan moieties. Glycosylation occurs as these enzymes are trafficked through the endoplasmic reticulum (ER) and Golgi apparatus on their way to the extracellular space and includes N-linked glycosylation, O-linked fucosylation and C-linked mannosylation. This chapter focuses on O-linked fucose, which is added to properly folded thrombospondin type 1 repeats (TSRs) in the ER by protein O-fucosyltransferase 2 (POFUT2) and elongated to a Glucoseβ1-3Fucose disaccharide by β3-glucosyltransferase (B3GLCT). Knockout of POFUT2 results in embryonic lethality in mice, and inactivating mutations in B3GLCT cause Peters plus syndrome, a congenital disorder of glycosylation in humans. Addition of the disaccharide by POFUT2 and B3GLCT stabilizes folded TSRs, enhancing folding in the ER and secretion efficiency of several ADAMTS proteins from cells. Thus, POFUT2 and B3GLCT both function as an ER quality control pathway for folding of TSRs in ADAMTS proteins. In this chapter we describe in detail the methods developed to analyze secretion defects of ADAMTS proteins upon loss of either POFUT2 or B3GLCT. The methods described include creation of CRISPR/Cas9-mediated knockout cell lines of POFUT2 and B3GLCT and use of these cell lines to analyze and quantify secretion defects of ADAMTS proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call