Abstract

Laser-induced fluorescence (LIF) technology has been widely applied to monitor vegetation growth status and biochemical concentrations. Thus, it is important to accurately acquire the fluorescence information for the quantitative monitoring of vegetation growth status. In this study, firstly, the incidence angle's effect on chlorophyll fluorescence intensity was analyzed by using the FluorMODleaf model. Then, comprehensive experimental data on the angle dependence of the fluorescence intensity to vegetation leaf surface were collected. Numerical and experimental results showed that proposed corrected cosine expression could be used to describe the relationship between the incidence angle and the fluorescence intensity in the LIF-Lidar. Lastly, fluorescence signals at 685 and 740 nm extracted at different incident angles of excitation lights were fitted with the corrected cosine expression. The coefficient of determination (R2) of the fitting results reached a maximum value of 0.93 for Salix babylonica.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.