Abstract

PurposeThe final properties of ductile iron are decided by the inoculant processing while pouring the melt. The shape and size of nodules generated during solidification are of paramount importance in solidification of ductile cast iron. The purpose of this study is to examine the effect of different inoculant addition on the solidification of ductile cast iron melt through thermal analysis.Design/methodology/approachThermal analysis has recently grown as a tool for modeling the solidification behavior of ductile cast irons. Iron properties will be predicted by analyzing the cooling curve patterns of the melts and predicting the related effectiveness of inoculant processing. In this study, thermal analysis is used to evaluate the need for inoculation.FindingsThe amount and type of inoculation will affect the amount of undercooling during the solidification of ductile cast iron. It is found that the addition of 0.1 to 0.4 Wt.% inoculant lowers the austenite dendrite formation starting temperature while increasing the eutectic freezing temperature. Microstructure analysis revealed that the addition of inoculation increases the nodule count from 103 to 242 nodules. The beneficial effects of inoculation are sustained by an improved graphitization factor, which shows the formation of graphite nodules in the second phase of the eutectic reaction.Originality/valueThe inoculation treatment has improved metallurgical occurrences such as carbide to graphite conversion, graphite microstructure control, graphite nodule count at the start of solidification and the last stage of solidification, which determines the soundness of casting. The foundry industry can follow these steps for monitoring the solidification of ductile iron castings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call