Abstract

Magnesium as implant material is being investigated extensively due to its superior suitability. With corrosion rate being the major obstacle, this paper aims to determine the effects of high repetition laser shock peening (HRLSP) on the dynamic corrosion rate of magnesium. While there is lot of research on corrosion of magnesium, in this work, a specially designed test bench was used for characterization of dynamic corrosion to mimic the physiological conditions experienced by the implant inside human body. From the results, it can be inferred that corrosion rate of peened samples reduced by at least 6 times compared to unpeened sample and sample peened with 66% overlap 1 scans exhibited the least corrosion. The wettability of the samples was also determined as a measure to analyze the effects of HRLSP on biocompatibility. In addition, peening is seen to induce surface corrosion, which minimizes the risks of implant failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.