Abstract
Internal solitary waves with large amplitude have long been observed in the Strait of Gibraltar (SoG). Beautiful satellite images depict the ISW observed at the entrance of the Alboran Sea, generated by the interaction between tides and the topography at Camarinal Sill, the most important topographic obstacle in the Strait. As the tidal current heads west, it becomes supercritical over the sill, leading to the development of an internal hydraulic jump. When the current weakens, the flow reverts to subcritical,  the internal hydraulic jump is released, leading to the eastward propagation of an internal bore. This bore progressively transforms into an ISW train due to non-hydrostatic dispersion and non-linear effects. While the main mechanism of generation is now well understood, there are still open questions about the intricate dynamics of these nonlinear internal waves and their evolution along the Strait. Previous studies show an important variability in the shape, intensity and arrival time of this internal solitary train.    Recent field experiments have revealed a complex network of local hydraulic jumps forming near Camarinal Sill. From the same dataset, the potential generation of not just one but two ISW trains has been addressed.  Then, we have investigated the implication on the evolution of these trains during their journey in the Strait of Gibraltar.    Our mooring data reveal the presence of two trains of ISWs with slightly different north-south fronts east of Camarinal Sill. We propose hypotheses to explain the tilting of the fronts based on differential mixing and meridional tidal variability . Moreover, these findings prompt us to reconsider our understanding of the physics responsible for the observation of non-rank ordered ISW trains in the eastern part of the strait. To deeply investigate the consequences of nonlinear wave-wave interaction in the disorganization of the train, we implemented a simplified 3D non-hydrostatic configuration. 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.