Abstract

This paper presents a novel approach to analyzing the dynamics of COVID-19 using nonstandard finite difference (NSFD) schemes. Our model incorporates both asymptomatic and symptomatic infected individuals, allowing for a more comprehensive understanding of the epidemic's spread. We introduce an unconditionally stable NSFD system that eliminates the need for traditional Runge–Kutta methods, ensuring dynamical consistency and numerical accuracy. Through rigorous numerical analysis, we evaluate the performance of different NSFD strategies and validate our analytical findings. Our work demonstrates the benefits of using NSFD schemes for modeling infectious diseases, offering advantages in terms of stability and efficiency. We further illustrate the dynamic behavior of COVID-19 under various conditions using numerical simulations. The results from these simulations demonstrate the effectiveness of the proposed approach in capturing the epidemic's complex dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.