Abstract

Progression-free survival (PFS) is an important clinical metric in oncology and is typically illustrated and evaluated using a survival function. The survival function is often estimated post-hoc using the Kaplan-Meier estimator but more sophisticated techniques, such as population modeling using the nonlinear mixed-effects framework, also exist and are used for predictions. However, depending on the choice of population model PFS will follow different distributions both quantitatively and qualitatively. Hence the choice of model will also affect the predictions of the survival curves.In this paper, we analyze the distribution of PFS for a frequently used tumor growth inhibition model with and without drug-resistance and highlight the translational implications of this. Moreover, we explore and compare how the PFS distribution for combination therapy differs under the hypotheses of additive and independent-drug action.Furthermore, we calibrate the model to preclinical data and use a previously calibrated clinical model to show that our analytical conclusions are applicable to real-world setting. Finally, we demonstrate that independent-drug action can effectively describe the tumor dynamics of patient-derived xenografts (PDXs) given certain drug combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.