Abstract

Coronary heart disease (CHD) is one of the major causes of disability in adults as well as one of the main causes of death in the developed countries. Although significant progress has been made in the diagnosis and treatment of CHD, further investigation is still needed. The objective of this study was to develop the assessment of heart event-risk factors targeting in the reduction of CHD events using Weighted Association Rule Mining. The risk factors investigated were: 1) before the event: a) nonmodifiable—age, sex, and family history for premature CHD, b) modifiable—smoking before the event, history of hypertension, and history of diabetes; and 2) after the event: modifiable—smoking after the event, systolic blood pressure, diastolic blood pressure, total cholesterol, highdensity lipoprotein, low-density lipoprotein, triglycerides, and glucose. The events investigated were: myocardial infarction (MI), percutaneous coronary intervention (PCI), and coronary artery bypass graft surgery (CABGData-mining analysis was carried out using the Weighted Association Rule Mining for the afore mentioned three events using five different splitting criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.