Abstract

The Chinshan Nuclear Power Plant (CSNPP) is a GE-designed BWR4 plant, having two identical units with rated core thermal power of 1804 MWt each unit. Several alternative shutdown cooling methods driven by natural or mixed convection has been proposed by the plant for studying the core cooling capability when the Residual Heat Removal (RHR) systems are not available or the refueling tasks, such as the In Vessel Visual Inspection (IVVI) work etc., is being proceeded. One of the examples is to connect a pipe from the outlet of the new spent fuel heat exchanger to the reactor cavity. The design of the alternatives shall ensure that the maximum core fluid temperature is limited below the boiling temperature of water. In this study, a Computational Fluid Dynamics (CFD) model is developed to analyze the natural convection phenomena during the shutdown period. Through a series of assumption, modeling and meshing processes, a calculation domain with approximate four million meshes including the RPV, reactor cavity and spent fuel pool, have been solved in this study. The analysis results showed that the passive alternative shutdown cooling system could provide sufficient heat removal capability to maintain the maximum core fluid temperature below boiling temperature. The results also indicated that the alternative shutdown cooling system could be served as an appropriate solution for CSNPP when the RHR is inoperable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call