Abstract

Particle boards are manufactured through a hot pressing process using wood materials (natural polymer materials) and adhesive, which find common usage in indoor decorative finishing materials. Flame-retardant particleboard, crucial for fire safety in such applications, undergoes performance analysis that includes assessing temperature distribution across its facing surface and temperature increase on the backside surface during facade combustion, yielding critical insights into fire scenario development. In this study, a compact flame spread apparatus is utilized to examine the flame retardancy and combustion behavior of particle boards, with a specific emphasis on the application of cost-effective flame retardants, encompassing aluminum hypophosphite (ALHP), an intumescent flame retardant (IFR) comprising ammonium polyphosphate (APP), melamine (MEL), and Dipentaerythritol (DPE), alongside magnesium hydroxide (MDH), and their associated combustion characteristics. The D300°C values, representing the vertical distance from the ignition point (IP) to P300°C (the temperature point at 300 °C farthest from IP), are measured using a compact temperature distribution measurement platform. For MDH/PB, APP + MEL + DPE/PB, and ALHP/PB samples, the respective D300°C values of 145.79 mm, 117.81 mm, and 118.57 mm indicate reductions of 11.11%, 28.17%, and 27.71%, compared to the untreated sample's value of 164.02 mm. The particle boards treated with ALHP, IFR, and MDH demonstrated distinct flame-retardant mechanisms. MDH/PB relied on the thermal decomposition of MDH to produce MgO and H2O for flame retardancy, while APP + MEL + DPE/PB achieved flame retardancy through a cross-linked structure with char expansion, polyphosphate, and pyrophosphate during combustion. On the other hand, ALHP/PB attained flame retardancy by reacting with wood materials and adhesives, forming a stable condensed P-N-C structure. This study serves as a performance reference for the production of cost-effective flame-resistant particleboards and offers a practical method for assessing its fire-resistant properties when used as a decorative finishing material on facades in real fire situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.