Abstract

Understanding spin-selective interactions between electrons and chiral molecules is critical to elucidating the significance of electron spin in biological processes and to assessing the potential of chiral assemblies for organic spintronics applications. Here, we use fluorescence microscopy to visualize the effects of spin-dependent charge transport in self-assembled monolayers of double-stranded DNA on ferromagnetic substrates. Patterned DNA arrays provide background regions for every measurement to enable quantification of substrate magnetization-dependent fluorescence due to the chiral-induced spin selectivity effect. Fluorescence quenching of photoexcited dye molecules bound within DNA duplexes is dependent upon the rate of charge separation/recombination upon photoexcitation and the efficiency of DNA-mediated charge transfer to the surface. The latter process is modulated using an external magnetic field to switch the magnetization orientation of the underlying ferromagnetic substrates. We discuss our results in the context of the current literature on the chiral-induced spin selectivity effect across various systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.