Abstract

AbstractDrought is a slow‐onset, creeping natural hazard and a recurrent phenomenon in the arid and semi‐arid regions of Gujarat (India). In Asia, the standardized precipitation index (SPI) has gained wider acceptance in the detection and the estimation of the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI, in comparison with other indices, is that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. This index captures the accumulated deficit (SPI < 0) or surplus (SPI > 0) of precipitation over a specified period, and provides a normalized measure (i.e. spatially invariant Z score) of relative precipitation anomalies at multiple time scales. In the present study, monthly time series of rainfall data (1981–2003) from 160 stations were used to derive SPI, particularly at 3‐month time scales. This 3‐month SPI was interpolated to depict spatial patterns of meteorological drought and its severity during typical drought and wet years. Correlation analysis was also done to evaluate usefulness of SPI to quantify effects of drought on food grain productivity. Further, time series of SPI were exploited to assess the drought risk in Gujarat. Copyright © 2007 Royal Meteorological Society

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call