Abstract
In this paper, we perform sentiment analysis and topic modeling on Twitter and Facebook posts of nine public sector organizations operating in Northeast US. The study objective is to compare and contrast message sentiment, content and topics of discussion on social media. We discover that sentiment and frequency of messages on social media is indeed affected by nature of organization’s operations. We also discover that organizations either use Twitter for broadcasting or one-to-one communication with public. Finally we found discussion topics of organizations – identified through unsupervised machine learning – that engaged in similar areas of public service having similar topics and keywords in their public messages. Our analysis also indicates missed opportunities by these organizations when communication with public. Findings from this study can be used by public sector entities to understand and improve their social media engagement with citizens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.