Abstract

Analyzing functional MRI data is often a hard task due to the fact that these periodic signals are strongly disturbed with noise. In many cases, the signals are buried under the noise and not visible, such that detection is quite impossible. However, it is well known that the amplitude measurements of such disturbed signals follow a Rice distribution which is characterized by two parameters. In this paper, an alternative Bayesian approach is proposed to tackle this two-parameter estimation problem. By incorporating prior knowledge into a mathematical framework, the drawbacks of the existing methods (i.e. the maximum likelihood approach and the method of moments) can be overcome. The performance of the proposed Bayesian estimator is analyzed theoretically and illustrated through simulations. Finally, the developed approach is successfully applied to measurement data for the analysis of functional MRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.