Abstract
AbstractReviews in App stores are a massive and fast‐growing data resource for developers to understand user experiences and their needs. Studies show that users often express their sentiments on App features in reviews, and this information is important for the development and evolution of Apps. To help developers gain such information efficiently, this paper proposes a method using App descriptions, another typical data in App stores, to guide the analysis of reviews. Firstly, we extract App features from descriptions, then summarize them to gain topics of App features as high‐level information; the results are formalized as a topic‐based domain model (TBDM). Secondly, we train classifiers of reviews based on the model to establish the relationships between user sentiments and App features. Finally, a quantified method is given to analyze the model based on developer preferences for recommending and summarizing reviews. To evaluate our approach, experiments were conducted using the App descriptions and reviews collected from Google Play. The results indicate that the approach can classify reviews to their related App features effectively (average F measure is 86.13%), and provides useful information for overall analyzing App features in a domain and identifying (dis)advantages of an App.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.