Abstract
Observing and interpreting restaurant customers’ evolution of dining patterns and satisfaction during COVID-19 is of critical importance in terms of developing sustainable business insights. This study describes and analyzes customers’ dining behavior before and after the pandemic outbreak by means of statistically aggregating and empirically correlating 651,703 restaurant-user-generated contents posted by diners during 2019–2020. Twenty review topics, mostly food, were identified by latent Dirichlet allocation, whereas analysis of variation and rating-review regression were performed to explore whether and why customers became less satisfied. Results suggest that customers have been paying fewer visits to restaurants since the outbreak, assigning lower ratings, and showing limited evidence of spending more. Interestingly, queuing, the most annoying factor for restaurant customers during normal periods, turns out to receive much less complaint during COVID-19. This study contributes by discovering business knowledge in the context of COVID-19 based on big data that features accessibility, relevance, volume, and information richness, which is transferable to future studies and can benefit additional population and business. Meanwhile, this study also provides practical suggestions to managers regarding the framework of self-evaluation, business mode, and operational optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.