Abstract

We show that recursive programs where variables range over finite domains can be effectively and efficiently analyzed by describing the analysis algorithm using a formula in a fixed-point calculus. In contrast with programming in traditional languages, a fixed-point calculus serves as a high-level programming language to easily, correctly, and succinctly describe model-checking algorithms While there have been declarative high-level formalisms that have been proposed earlier for analysis problems (e.g., Datalog the fixed-point calculus we propose has the salient feature that it also allows algorithmic aspects to be specified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.