Abstract
This research aims to improve the accuracy of liver disease classification using Quantum Feature Engineering (QFE) and the Synthetic Minority Over-sampling Tech-nique and Tomek Links (SMOTE-Tomek) data balancing technique. Four machine learning models were compared in this research, namely eXtreme Gradient Boosting (XGB), Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR) on the Indian Liver Patient Dataset (ILPD) dataset. QFE is applied to capture correlations and complex patterns in the data, while SMOTE-Tomek is used to address data imbalances. The results showed that QFE significantly improved LR performance in terms of recall and specificity up to 99%, which is very important in medical diagnosis. The combination of QFE and SMOTE-Tomek gives the best results for the XGB method with an accuracy of 81%, recall of 90%, and f1-score of 83%. This study concludes that the use of QFE and data balancing techniques can improve liver disease classification performance in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Future Artificial Intelligence and Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.