Abstract
Piezoresponse force microscopy (PFM) has emerged as the tool of choice for characterizing piezoelectric and ferroelectric materials at nanoscale, yet the interpretation of PFM remains to be difficult and sometimes ambiguous. Built on earlier works, we developed a numerical integration scheme to analyze the expected PFM response in ferroelectrics with arbitrary domain configurations, with the ultimate goal to accurately reconstruct the underlying ferroelectric structure from PFM measurements. Using such technique, we demonstrated that the relationship between the effective and intrinsic piezoelectric coefficients is sensitive to a variety of factors that are intrinsic to the probed materials, and showed that the PFM mapping is not only influenced by polarization distribution on the sample surface but also three-dimensional polarization distribution inside the material. While relatively simple domain structures were used for demonstration, the approach is general, and can be applied to ferroelectrics with arbitrary polarization distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.