Abstract

In the present work, experimental investigation has been carried out to enhance the properties of acrylonitrile butadiene styrene joints. Here, nanosilica particle was used as reinforcement to form composite-like structure in the friction stir processed region and improve the joint strength. Experiments were designed based on response surface methodology to correlate relationship between parameters viz. nanosilica volume fraction, pass number, tool rotation speed, and travel speed to responses viz. tensile strength, hardness, and angular distortion. Analysis of variances has also been performed to find which factor has the greatest impact on joint properties. It is found from the results that silica addition and pass number have significant influence on tensile strength and hardness. Also, the angular distortion is mainly influenced by silica volume fraction and tool rotational speed. In order to find optimal combination of process parameter regarding maximum strength and hardness as well as minimum angular distortion, desirability approach function was utilized. The obtained results showed that in order, 20% silica volume fraction, two pass numbers, 1600 rpm tool rotation, and 40 mm/min travel speed cause desirability of 83%. The optimum results were further verified through confirmatory experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.