Abstract
We prove the first non-trivial performance ratio strictly above 0.5 for the weighted Ranking algorithm on the oblivious matching problem where nodes in a general graph can have arbitrary weights. We have discovered a new structural property of the ranking algorithm: if a node has two unmatched neighbors, then it will still be matched even when its rank is demoted to the bottom. This property allows us to form LP constraints for both the weighted and the unweighted versions of the problem. Using a new class of continuous linear programming (LP), we prove that the ratio for the weighted case is at least 0.501512, and we improve the ratio for the unweighted case to 0.526823 (from the previous best 0.523166 in SODA 2014). Unlike previous continuous LP, in which the primal solution must be continuous everywhere, our new continuous LP framework allows the monotone component of the primal function to have jump discontinuities, and the other primal components to take non-conventional forms, such as the Dirac δ function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.