Abstract

In this paper, we introduce the use of microscale schlieren technique to measure mixing inhomogeneity in a microfluidic device. The microscale schlieren system is constructed from a Hoffman modulation contrast microscope, which provides easy access to the rear focal plane of the objective lens, by removing the slit plate and replacing the modulator with a knife-edge. The working principle of microscale schlieren technique relies on detecting light deflection caused by variation of refractive index1-3. The deflected light either escapes or is obstructed by the knife-edge to produce a bright or a dark band, respectively. If the refractive index of the mixture varies linearly with its composition, the local change in light intensity in the image plane is proportional to the concentration gradient normal to the optical axis. The micro-schlieren image gives a two-dimensional projection of the disturbed light produced by three-dimensional inhomogeneity. To accomplish quantitative analysis, we describe a calibration procedure that mixes two fluids in a T-microchannel. We carry out a numerical simulation to obtain the concentration gradient in the T-microchannel that correlates closely with the corresponding micro-schlieren image. By comparison, a relationship between the grayscale readouts of the micro-schlieren image and the concentration gradients presented in a microfluidic device is established. Using this relationship, we are able to analyze the mixing inhomogeneity from associate micro-schlieren image and demonstrate the capability of microscale schlieren technique with measurements in a microfluidic oscillator4. For optically transparent fluids, microscale schlieren technique is an attractive diagnostic tool to provide instantaneous full-field information that retains the three-dimensional features of the mixing process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.