Abstract

Longitudinal data often arise when subjects are followed over a period of time, and in many situations, there may exist informative observation times and a dependent terminal event such as death that stops the follow-up. In this article, we propose joint modeling and analysis of longitudinal data with possibly informative observation times and a dependent terminal event in which a common subject-specific latent variable is used to characterize the correlations. A borrow-strength estimation procedure is developed for parameter estimation, and both large-sample and finite-sample properties of the proposed estimators are established. In addition, some goodness-of-fit methods for assessing the adequacy of the model are provided. An application to a bladder cancer study is illustrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.