Abstract

Long-term exposure to high levels of arsenic (As) will result in damage to organs. Compared with free arsenic, protein-bound arsenic are more difficult to be excreted from the bodies due to their complexation with biological macromolecules. We developed a method of size exclusion chromatography (SEC) and ion exchange chromatography (IEC) combined with inductively coupled plasma-mass spectrometry (ICP-MS) and multiple reaction monitoring (MRM) mode, which was used to determine bound-arsenic species. DMAV was identified as bound arsenic species in rat livers after As4S4 overexposure. Subsequent proteomics analysis showed the potential binding partners included hemoglobin, glutathione S-transferases, superoxide dismutase [Cu–Zn] & [Mn], thiosulfate sulfurtransferase, and metallothionein-2. The method developed here was sensitive, repeatable, and conducive to arsenic analysis, especially for toxicity evaluation of arsenic-containing substances in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call