Abstract
Analyzing the topology of network structures is an important topic studied from many different aspects of science and mathematics. The Wiener polarity index (number of unordered pairs of vertices at distance 3 from each other) is one of the representative descriptors of graph structures. It was computed for several lattice networks by Chen et al. [11] in an effort to understand the properties of these networks. The Wiener polarity index is a variation of the classic distance-based graph invariant, the Wiener index (sum of distances between all pairs of vertices), which is known to be closely related to the number of substructures. In this paper we examine the numbers of various subgraphs of order 4 for these lattice networks. In addition to confirming their symmetric nature, comparing the numbers of various substructures leads to insights on other less trivial characteristics of these network structures of common interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.