Abstract

ABSTRACTObjective: The main objective of this study is to identify the main factors associated with injury severity of vulnerable road users (VRUs) involved in accidents at highway railroad grade crossings (HRGCs) using data mining techniques.Methods: This article applies an ordered probit model, association rules, and classification and regression tree (CART) algorithms to the U.S. Federal Railroad Administration's (FRA) HRGC accident database for the period 2007–2013 to identify VRU injury severity factors at HRGCs.Results: The results show that train speed is a key factor influencing injury severity. Further analysis illustrated that the presence of illumination does not reduce the severity of accidents for high-speed trains. In addition, there is a greater propensity toward fatal accidents for elderly road users compared to younger individuals. Interestingly, at night, injury accidents involving female road users are more severe compared to those involving males.Conclusions: The ordered probit model was the primary technique, and CART and association rules act as the supporter and identifier of interactions between variables. All 3 algorithms' results consistently show that the most influential accident factors are train speed, VRU age, and gender. The findings of this research could be applied for identifying high-risk hotspots and developing cost-effective countermeasures targeting VRUs at HRGCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.