Abstract
A novel method for learning and recognizing sequential image data is proposed, and promising applications to vision-based human movement analysis are demonstrated. To find more compact representations of high-dimensional silhouette data, we exploit locality preserving projections (LPP) to achieve low-dimensional manifold embedding. Further, we present two kinds of methods to analyze and recognize learned motion manifolds. One is correlation matching based on the Hausdorrf distance, and the other is a probabilistic method using continuous hidden Markov models (HMM). Encouraging results are obtained in two representative experiments in the areas of human activity recognition and gait-based human identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.