Abstract
The aim of this study was to identify the key genes involved in the cardiac hypertrophy (CH) induced by pressure overload. mRNA microarray data sets GSE5500 and GSE18801 were downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were screened using the Limma package; then, functional and pathway enrichment analysis were performed for common DEGs using the Database for Annotation, Visualization and Integrated Discovery database. Furthermore, the top DEGs were further validated using quantitative PCR in the hypertrophic heart tissue induced by isoprenaline. A total of 113 common DEGs with absolute fold change > 0.5, including 60 significantly upregulated DEGs and 53 downregulated DEGs, were obtained. Gene ontology term enrichment analysis suggested that common upregulated DEG were mainly enriched in neutrophil chemotaxis, extracellular fibril organization, and cell proliferation; and the common downregulated genes were significantly enriched in ion transport, endoplasmic reticulum, and dendritic spine. Kyoto Encyclopedia of Genes and Genomes pathway analysis found that the common DEGs were mainly enriched in extracellular matrix receptor interaction, phagosome, and focal adhesion. Additionally, the expression of Mfap4, Ltbp2, Aspn, Serpina3n, and Cnksr1 were upregulated in the model of CH, while the expression of Anp32a was downregulated. The current study identified the key deregulated genes and pathways involved in the CH, which could shed new light to understand the mechanism of CH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.