Abstract
Assessing interventions for mobility disorders using real-life movement remains an unsolved problem. We propose a new method combining the strengths of traditional laboratory studies where environment is strictly controlled, and field-based studies where subjects behave naturally. We use a foot-mounted inertial sensor, a GPS receiver and a barometric altitude sensor to reconstruct a subject’s path and detailed foot movement, both indoors and outdoors, during days-long measurement using strapdown navigation and sensor fusion algorithms. We cluster repeated movement paths based on location, and propose that on these paths, most environmental and behavioral factors (e.g., terrain and motivation) are as repeatable as in a laboratory. During each bout of movement along a frequently repeated path, any synchronized measurement can be isolated for study, enabling focused statistical comparison of different interventions. We conducted a 10-day test on one subject wearing athletic shoes and sandals each for five days. The algorithm detected four frequently-repeated straight walking paths with at least 300 total steps and repetitions on at least three days for each condition. Results on these frequently-repeated paths indicated significantly lower foot clearance and shorter stride length and a trend toward decreased stride width when wearing athletic shoes vs. sandals. Comparisons based on all straight walking were similar, showing greater statistical power, but higher variability in the data. The proposed method offers a new way to evaluate how mobility interventions affect everyday movement behavior.
Highlights
Treatment for musculoskeletal mobility disorders includes many products and rehabilitation strategies, but there is little sound assessment about how these affect individuals in their daily lives.Current research assessing outcomes and developing standards of care is based on either (i) focused, laboratory-based studies, or (ii) studies based on wearable sensors such as pedometers, accelerometers, and heart rate monitors in everyday life
Long-term monitoring through field-based wearable sensors provides a minimally-altered window into everyday movement [2], but these data can be difficult to distill into generalizable knowledge because many influencing factors are left uncontrolled, such as terrain, weather, setting, and purpose of locomotion
The trajectory reconstruction method is based on a standard inertial navigation algorithm termed pedestrian dead-reckoning (PDR), which uses a shoe-mounted inertial measurement unit (IMU, including a 3-axis accelerometer, a 3-axis angular rate gyroscope, and optionally a 3-axis magnetometer)
Summary
Current research assessing outcomes and developing standards of care is based on either (i) focused, laboratory-based studies, or (ii) studies based on wearable sensors such as pedometers, accelerometers, and heart rate monitors in everyday life. Both approaches have drawbacks that make them inadequate for fully assessing the effects of interventions on mobility. Laboratory tests enable well-controlled comparisons of detailed data, and impose unrealistic influences on subjects, such as social pressure to perform well, heightened attention, instructions for the walking task, etc. Neither approach enables a thorough assessment of how interventions influence individuals’ movement
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.