Abstract
In this paper, we present a new method for handling fuzzy risk analysis problems based on the proposed new similarity measure between interval-valued fuzzy numbers. First, we present a new similarity measure between interval-valued fuzzy numbers. It considers the degrees of closeness between interval-valued fuzzy numbers on the X-axis and the degrees of differences between the shapes of the interval-valued fuzzy numbers on the X-axis and the Y-axis, respectively. We also prove three properties of the proposed similarity measure. Then, we make an experiment to compare the experimental results of the proposed method with the existing similarity measures between interval-valued fuzzy numbers. The proposed method can overcome the drawbacks of the existing methods. Finally, based on the proposed similarity measure between interval-valued fuzzy numbers, we present a new fuzzy risk analysis algorithm for dealing with fuzzy risk analysis problems. Because the proposed method allows the evaluating values of sub-components to be represented by interval-valued fuzzy numbers, it is more flexible than Chen and Chen’s method (2003).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.