Abstract

In the present experimental data, reciprocating wear testing was done on piston aluminum alloys. In some cases, this material was also reinforced by 1% wt. of clay nano-particles and also tested under wear conditions. For this objective, a permanent-mold casting process was done for the aluminum alloy sample. Besides, a stir-casting technique was used for the fabrication of aluminum-matrix nano-composite plus preheating of nano-particles. Then, for both material types (aluminum alloys, with and without nano-particle reinforcement), the weight, the wear rate, and the friction coefficient were measured during testing. Reciprocating wear testing was performed based on the ASTM-G133 standard for 500 m of the wear distance. Other factors were considered as 10, 20, and 30 N for the applied force with a linear velocity of 1 and 7 m/s (equal to 600 and 3600 rpm of the wear testing device). A nodular cast iron (MF-116) based on the piston ring material was utilized as the abrasive system with a hardness of 35–45 HRC in a dry environment. Finally, obtained experimental results were analyzed by a regression technique for the sensitivity analysis of outputs on inputs. Three input parameters were the force, the velocity, and the reinforcement. Moreover, the total wear rate and the average friction coefficient were the output factors. The effect of each input on all outputs was drawn in different contour and surface diagrams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call