Abstract

In this letter, we determine the importance of the electrical field distribution and strength during the switching process by demonstrating different trends in the degree of reset and the reset pulse time. In general, a longer reset pulse time results in a higher reset energy; a higher reset energy leads to a higher degree of reset, which we obtained by applying different width square waves. But quite notably, the opposite result was obtained using triangle waves, where a higher degree of reset occurred with a shorter rising time and lower reset energy. We believe that this is due to the electric field effect: if the voltage rises faster than the filament oxidation, the device can produce a larger effective electric field and a higher resistance in the reset process. To further investigate the mechanism, the procedure of the reset process was analyzed in detail, and COMSOL simulation is also carried out for confirmation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call