Abstract

BackgroundFootball player's health is important, and preventing sudden cardiac arrest may be a critical issue. Professional football players have different ECG signals than the average population, yet there are considerable gaps in study whereas the general population has been extensively studied. Objectives(a) Generate a reference and innovative resting 12-lead ECG database from 54 UEFA PRO level male football players from La Liga. This is a novel approach to cope the ECG and possible arrythmias in athletes. (b) Manage each XML athlete ECG data and develop a free-use program to visualize, denoise and filter the signal with the capacity to automate the labelling of the waves and save the reports. (c) Study the ECG wave shape and generate models through ML to analyse its utility to automate basic diagnosis. MethodsThe dataset collection is based on a prospective observational cohort and includes 10 s, 12-lead ECGs and rhythm and condition labels for each athlete. Physiological sport arrhythmias, T-Wave shape and other findings were studied and labelled. ECG Visualizer was developed and used for 3 machine learning (ML) methods to automate sinus bradycardia arrhythmia diagnosis. ResultsA dataset with 163 ECGs in XML format was collected comprising the Pro Football 12-lead Resting Electrocardiogram Database (PF12RED). “ECG Visualizer” software was developed, and ML was shown to be useful in detecting sinus bradycardia. ConclusionsThe study demonstrates that AI and machine learning can detect simple arrhythmias with accuracy, also it provides a valuable dataset and a free software application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.