Abstract

Communicable diseases including COVID-19 pose a major threat to public health worldwide. To curb the spread of communicable diseases effectively, timely surveillance and prediction of the risk of pandemics are essential. The aim of this study is to analyze free and publicly available data to construct useful travel data records for network statistics other than common descriptive statistics. This study describes analytical findings of time-series plots and spatial-temporal maps to illustrate or visualize pandemic connectedness. We analyzed data retrieved from the web-based Collaborative Arrangement for the Prevention and Management of Public Health Events in Civil Aviation dashboard, which contains up-to-date and comprehensive meta-information on civil flights from 193 national governments in accordance with the airport, country, city, latitude, and the longitude of flight origin and the destination. We used the database to visualize pandemic connectedness through the workflow of travel data collection, network construction, data aggregation, travel statistics calculation, and visualization with time-series plots and spatial-temporal maps. We observed similar patterns in the time-series plots of worldwide daily flights from January to early-March of 2019 and 2020. A sharp reduction in the number of daily flights recorded in mid-March 2020 was likely related to large-scale air travel restrictions owing to the COVID-19 pandemic. The levels of connectedness between places are strong indicators of the risk of a pandemic. Since the initial reports of COVID-19 cases worldwide, a high network density and reciprocity in early-March 2020 served as early signals of the COVID-19 pandemic and were associated with the rapid increase in COVID-19 cases in mid-March 2020. The spatial-temporal map of connectedness in Europe on March 13, 2020, shows the highest level of connectedness among European countries, which reflected severe outbreaks of COVID-19 in late March and early April of 2020. As a quality control measure, we used the aggregated numbers of international flights from April to October 2020 to compare the number of international flights officially reported by the International Civil Aviation Organization with the data collected from the Collaborative Arrangement for the Prevention and Management of Public Health Events in Civil Aviation dashboard, and we observed high consistency between the 2 data sets. The flexible design of the database provides users access to network connectedness at different periods, places, and spatial levels through various network statistics calculation methods in accordance with their needs. The analysis can facilitate early recognition of the risk of a current communicable disease pandemic and newly emerging communicable diseases in the future.

Highlights

  • Communicable diseases remain a major public health threat worldwide

  • We found that changes in network density can serve as an early signal of the risk of a pandemic

  • With initial reports of COVID-19 cases worldwide, a high network density and reciprocity in early-March 2020 were early signals of the COVID-19 pandemic and were associated with the rapid increase in COVID-19 cases reported by the World Health Organization (WHO) in mid-March 2020 (Figure 2C)

Read more

Summary

Introduction

Communicable diseases remain a major public health threat worldwide. The COVID-19 pandemic is a stark reminder of the ongoing challenge posed by communicable diseases on human health [1]. Surveillance and estimation of the risk of a pandemic are crucial for curbing the spread of communicable diseases. Without efficacious medications and vaccines, the implementation of nonpharmaceutical interventions, such as air travel restrictions and social distancing measures, is vital for controlling communicable diseases [2]. Network analysis is a powerful tool to estimate the risk of a pandemic through network connectedness [3] when air travel is a common route of communicable disease transmission [4]. Network connectedness analysis using air travel data records can help visualize the effect of air travel restrictions on pandemic connectedness

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call