Abstract

Count-Min Sketch with Conservative Updates (CMS-CU) is a popular algorithm to approximately count items’ appearances in a data stream. Despite CMS-CU’s widespread adoption, the theoretical analysis of its performance is still wanting because of its inherent difficulty. In this paper, we propose a novel approach to study CMS-CU and derive new upper bounds on both the expected value and the CCDF of the estimation error under an i.i.d. request process. Our formulas can be successfully employed to derive improved estimates for the precision of heavy-hitter detection methods and improved configuration rules for CMS-CU. The bounds are evaluated both on synthetic and real traces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.