Abstract
The development of sensor networks has enabled detailed tracking of customer behavior in stores. Shopping path data which records each customer’s position and time information is attracting attention as new marketing data. However, there are no proposed marketing models which can identify good customers from huge amounts of time series data on customer movement in the store. This research aims to use shopping path data resulting from tracking customer behavior in the store, using information on the sequence of visiting each product zone in the store and staying time at each product zone, to find how they affect purchasing. To discover useful knowledge for store management, shopping paths data has been transformed into sequence data including information on visit sequence and staying times in the store, and LCMseq has been applied to them to extract frequent sequence patterns. In this paper, we find characteristic in-store behavior patterns of good customers by using actual data of a Japanese supermarket.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.