Abstract
AbstractThis research analyzes human‐generated clarification questions to provide insights into how they are used to disambiguate and provide a better understanding of information needs. A set of clarification questions is extracted from posts on the Stack Exchange platform. Novel taxonomy is defined for the annotation of the questions and their responses. We investigate the clarification questions in terms of whether they add any information to the post (the initial question posted by the asker) and the accepted answer, which is the answer chosen by the asker. After identifying, which clarification questions are more useful, we investigated the characteristics of these questions in terms of their types and patterns. Non‐useful clarification questions are identified, and their patterns are compared with useful clarifications. Our analysis indicates that the most useful clarification questions have similar patterns, regardless of topic. This research contributes to an understanding of clarification in conversations and can provide insight for clarification dialogues in conversational search scenarios and for the possible system generation of clarification requests in information‐seeking conversations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Association for Information Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.