Abstract

Bearings play an important role in a high-speed spindle. Its characteristics are often influenced by speed and thermal effects. This paper presents an approach that combines an inverse method with a high-speed ball bearing model to determine the characteristics of a high-speed spindle bearing under constant preload in actual working conditions. With temperature distribution in the entire spindle obtained by the experimental inverse heat transfer model from the authors’ previous results, the change in bearing parameters is then calculated and subsequently replaced in the bearing model to analyze the change in bearing characteristics. As a result, thermal effects on a bearing’s dynamic contact angles, contact forces, contact stress, stiffness, and lubricant film thickness are presented. Moreover, analysis results indicate that a bearing’s stiffness and lubricant film thickness nonlinearly vary with the increase in speed, and the thermal effect significantly affects the lubricant film thickness. The results presented herein may be applied to develop a dynamic model for a high-speed spindle using a constant preload and provide useful information to avoid failure in lubrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.