Abstract
Understanding cause-effect relationships is a crucial part of the scientific process. As Bell's theorem shows, within a given causal structure, classical and quantum physics impose different constraints on the correlations that are realisable, a fundamental feature that has technological applications. However, in general it is difficult to distinguish the set of classical and quantum correlations within a causal structure. Here we investigate a method to do this based on using entropy vectors for Tsallis entropies. We derive constraints on the Tsallis entropies that are implied by (conditional) independence between classical random variables and apply these to causal structures. We find that the number of independent constraints needed to characterise the causal structure is prohibitively high such that the computations required for the standard entropy vector method cannot be employed even for small causal structures. Instead, without solving the whole problem, we find new Tsallis entropic constraints for the triangle causal structure by generalising known Shannon constraints. Our results reveal new mathematical properties of classical and quantum Tsallis entropies and highlight difficulties of using Tsallis entropies for analysing causal structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.