Abstract

Defibrillation is often required to terminate a ventricular fibrillation or fast ventricular tachycardia rhythm and resume a perfusing rhythm in sudden cardiac arrest patients. Automated external defibrillators rely on automatic ECG analysis algorithms to detect the presence of shockable rhythms before advising the rescuer to deliver a shock. For a reliable rhythm analysis, chest compression must be interrupted to prevent corruption of the ECG waveform due to the artifact induced by the mechanical activity of compressions. However, these hands-off intervals adversely affect the success of treatment. To minimize the hands-off intervals and increase the chance of successful resuscitation, we developed a method which asks for interrupting the compressions only if the underlying ECG rhythm cannot be accurately determined during chest compressions. Using this method only a small percentage of cases need compressions interruption, hence a significant reduction in hands-off time is achieved. Our algorithm comprises a novel filtering technique for the ECG and thoracic impedance waveforms, and an innovative method to combine analysis from both filtered and unfiltered data. Requiring compression interruption for only 14% of cases, our algorithm achieved a sensitivity of 92% and specificity of 99%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.