Abstract

This work presents a comprehensive study of the combustion performance of an industrial furnace in an olefin plant using computational fluid dynamics (CFD) simulations. The focus was on analyzing the heat release pattern of bottom burners to optimize the furnace efficiency in steam-cracking processes. The study developed an accurate computational fluid dynamics (CFD) model for predicting combustion behavior in a cracking furnace. The computational model was validated by comparing the simulation results with industrial data and was used to investigate the impact of burner clogging and the importance of small holes in the body of burners in the furnace. The results also provided insights into the influence of excess air, temperature distribution, fluid behavior, composition of combustion products, and thermal efficiency of the furnace. The presented results contributed to a better understanding of parameters controlling combustion performance in steam-cracking furnaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.